RobWorkProject  23.9.11-
VectorND< N, T > Class Template Reference

A N-Dimensional Vector. More...

#include <VectorND.hpp>

Inherits Serializable.

## Public Types

typedef Eigen::Matrix< T, N, 1 > EigenVectorND
The type of the internal Eigen Vector.

typedef T value_type
Value type.

## Public Member Functions

VectorND ()
Creates a N-dimensional VectorND.

template<typename... ARGS>
VectorND (T arg0, ARGS... args)
Construct a Vector from N arguments. More...

VectorND (const std::vector< T > &vec)
construct vector from std::vector More...

template<class R >
VectorND (const Eigen::MatrixBase< R > &v)
Creates a 3D VectorND from Eigen type. More...

size_t size () const
The dimension of the VectorND (i.e. 3). This method is provided to help support generic algorithms using size() and operator[].

template<class R >
VectorND< N, T > elemMultiply (const Eigen::MatrixBase< R > &rhs) const
element wise multiplication. More...

template<class R >
VectorND< N, T > elemDivide (const Eigen::MatrixBase< R > &rhs) const
element wise division. More...

template<class R >
VectorND< N, T > operator- (const Eigen::MatrixBase< R > &rhs) const
Vector subtraction.

template<class R >
VectorND< N, T > operator+ (const Eigen::MatrixBase< R > &rhs) const

VectorND< N, T > elemDivide (const VectorND< N, T > &rhs) const
element wise division. More...

VectorND< N, T > elemMultiply (const VectorND< N, T > &rhs) const
Elementweise multiplication. More...

VectorND< N, T > operator- (const VectorND< N, T > &rhs) const
Vector subtraction.

VectorND< N, T > operator+ (const VectorND< N, T > &rhs) const

VectorND< N, T > operator- () const
Unary minus. More...

VectorND< N, T > operator/ (T rhs) const
Scalar division. More...

VectorND< N, T > operator* (T rhs) const
Scalar multiplication. More...

VectorND< N, T > elemSubtract (const T &rhs) const
Scalar subtraction.

VectorND< N, T > elemAdd (const T &rhs) const

norm2 () const
Returns the Euclidean norm (2-norm) of the VectorND. More...

norm1 () const
Returns the Manhatten norm (1-norm) of the VectorND. More...

normInf () const
Returns the infinte norm ( $$\inf$$-norm) of the VectorND. More...

double dot (const VectorND< N, T > &vec) const
calculate the dot product More...

VectorND< N, T > normalize ()
normalize vector to get length 1 More...

const T & operator() (size_t i) const
Returns reference to VectorND element. More...

T & operator() (size_t i)
Returns reference to VectorND element. More...

const T & operator[] (size_t i) const
Returns reference to VectorND element. More...

T & operator[] (size_t i)
Returns reference to VectorND element. More...

EigenVectorNDe ()
Accessor for the internal Eigen VectorND.

const EigenVectorNDe () const
Accessor for the internal Eigen VectorND.

std::vector< T > toStdVector () const
converts the vector to a std:vector More...

VectorND< N, T > & operator*= (double s)
Scalar multiplication.

VectorND< N, T > & operator/= (double s)
Scalar division.

VectorND< N, T > & operator+= (const VectorND< N, T > &v)

VectorND< N, T > & operator-= (const VectorND< N, T > &v)
Vector subtraction.

template<class R >
VectorND< N, T > & operator= (const Eigen::MatrixBase< R > &r)
copy a vector from eigen type More...

template<class R >
VectorND< N, T > & operator+= (const Eigen::MatrixBase< R > &r)

template<class R >
VectorND< N, T > & operator-= (const Eigen::MatrixBase< R > &r)
Vector subtraction.

template<class R >
bool operator== (const Eigen::MatrixBase< R > &rhs) const
Compare with rhs for equality. More...

template<class R >
bool operator!= (const Eigen::MatrixBase< R > &rhs) const
Compare with rhs for inequality. More...

bool operator== (const VectorND< N, T > &rhs) const
Compare with rhs for equality. More...

bool operator!= (const VectorND< N, T > &rhs) const
Compare with rhs for inequality. More...

void write (rw::common::OutputArchive &oarchive, const std::string &id) const

void read (rw::common::InputArchive &iarchive, const std::string &id)

operator EigenVectorND () const
implicit conversion to EigenVector

operator EigenVectorND & ()
implicit conversion to EigenVector

Public Member Functions inherited from Serializable
virtual ~Serializable ()
destructor

## Static Public Member Functions

static VectorND< N, T > zero ()
Get zero-initialized vector. More...

## Friends

template<class R >
VectorND< N, T > operator- (const Eigen::MatrixBase< R > &lhs, const VectorND< N, T > &rhs)
Vector subtraction.

template<class R >
VectorND< N, T > operator+ (const Eigen::MatrixBase< R > &lhs, const VectorND< N, T > &rhs)
Vector subtraction.

VectorND< N, T > operator/ (T lhs, const VectorND< N, T > &rhs)
Scalar division. More...

VectorND< N, T > operator* (T lhs, const VectorND< N, T > &rhs)
Scalar multiplication. More...

std::ostream & operator<< (std::ostream &out, const VectorND< N, T > &v)
Streaming operator. More...

template<class R >
bool operator== (const Eigen::MatrixBase< R > &lhs, const VectorND< N, T > &rhs)
Compare with rhs for equality. More...

template<class R >
bool operator!= (const Eigen::MatrixBase< R > &lhs, const VectorND< N, T > &rhs)
Compare with rhs for inequality. More...

## Related Functions

(Note that these are not member functions.)

template<size_t ND, class T >
const VectorND< ND, T > cross (const VectorND< ND, T > &v1, const VectorND< ND, T > &v2)
Calculates the 3D VectorND cross product $$\mathbf{v1} \times \mathbf{v2}$$. More...

template<size_t ND, class T >
void cross (const VectorND< ND, T > &v1, const VectorND< ND, T > &v2, VectorND< ND, T > &dst)
Calculates the 3D VectorND cross product $$\mathbf{v1} \times \mathbf{v2}$$. More...

template<size_t ND, class T >
dot (const VectorND< ND, T > &v1, const VectorND< ND, T > &v2)
Calculates the dot product $$\mathbf{v1} . \mathbf{v2}$$. More...

template<size_t ND, class T >
const VectorND< ND, T > normalize (const VectorND< ND, T > &v)
Returns the normalized VectorND $$\mathbf{n}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$$. In case $$\|mathbf{v}\| = 0$$ the zero VectorND is returned. More...

template<size_t ND, class T >
double angle (const VectorND< ND, T > &v1, const VectorND< ND, T > &v2, const VectorND< ND, T > &n)
Calculates the angle from $$\mathbf{v1}$$ to $$\mathbf{v2}$$ around the axis defined by $$\mathbf{v1} \times \mathbf{v2}$$ with n determining the sign. More...

template<size_t ND, class T >
double angle (const VectorND< ND, T > &v1, const VectorND< ND, T > &v2)
Calculates the angle from $$\mathbf{v1}$$ to $$\mathbf{v2}$$ around the axis defined by $$\mathbf{v1} \times \mathbf{v2}$$. More...

template<class Q , size_t ND, class T >
const VectorND< ND, Qcast (const VectorND< ND, T > &v)
Casts VectorND<N,T> to VectorND<Q> More...

## Detailed Description

### template<size_t N, class T = double> class rw::math::VectorND< N, T >

A N-Dimensional Vector.

## ◆ VectorND() [1/3]

 VectorND ( T arg0, ARGS... args )
inline

Construct a Vector from N arguments.

Parameters
 arg0 [in] first argument args [in] a list of arguments

## ◆ VectorND() [2/3]

 VectorND ( const std::vector< T > & vec )
inline

construct vector from std::vector

Parameters
 vec [in] the vector to construct from

## ◆ VectorND() [3/3]

 VectorND ( const Eigen::MatrixBase< R > & v )
inline

Creates a 3D VectorND from Eigen type.

Parameters
 v [in] an Eigen vector.

## ◆ dot()

 double dot ( const VectorND< N, T > & vec ) const
inline

calculate the dot product

Parameters
 vec [in] the vecor to be dotted
Returns
the dot product

## ◆ elemDivide() [1/2]

 VectorND elemDivide ( const Eigen::MatrixBase< R > & rhs ) const
inline

element wise division.

Parameters
 rhs [in] vector
Returns
the resulting VectorND

## ◆ elemDivide() [2/2]

 VectorND elemDivide ( const VectorND< N, T > & rhs ) const
inline

element wise division.

Parameters
 rhs [in] the vector being devided with
Returns
the resulting Vector3D

## ◆ elemMultiply() [1/2]

 VectorND elemMultiply ( const Eigen::MatrixBase< R > & rhs ) const
inline

element wise multiplication.

Parameters
 rhs [in] the vector being multiplied with
Returns
the resulting VectorND

## ◆ elemMultiply() [2/2]

 VectorND elemMultiply ( const VectorND< N, T > & rhs ) const
inline

Elementweise multiplication.

Parameters
 rhs [in] vector
Returns
the element wise product

## ◆ norm1()

 T norm1 ( ) const
inline

Returns the Manhatten norm (1-norm) of the VectorND.

Returns
the norm

## ◆ norm2()

 T norm2 ( ) const
inline

Returns the Euclidean norm (2-norm) of the VectorND.

Returns
the norm

## ◆ normalize()

 VectorND normalize ( )
inline

normalize vector to get length 1

Returns
the normalized Vector

## ◆ normInf()

 T normInf ( ) const
inline

Returns the infinte norm ( $$\inf$$-norm) of the VectorND.

Returns
the norm

## ◆ operator!=() [1/2]

 bool operator!= ( const Eigen::MatrixBase< R > & rhs ) const
inline

Compare with rhs for inequality.

Parameters
 rhs [in] other vector.
Returns
True if this and rhs are different, false otherwise.

## ◆ operator!=() [2/2]

 bool operator!= ( const VectorND< N, T > & rhs ) const
inline

Compare with rhs for inequality.

Parameters
 rhs [in] other vector.
Returns
True if this and rhs are different, false otherwise.

## ◆ operator()() [1/2]

 T& operator() ( size_t i )
inline

Returns reference to VectorND element.

Parameters
 i [in] index in the VectorND $$i\in \{0,1,2\}$$
Returns
reference to element

## ◆ operator()() [2/2]

 const T& operator() ( size_t i ) const
inline

Returns reference to VectorND element.

Parameters
 i [in] index in the VectorND $$i\in \{0,1,2\}$$
Returns
const reference to element

## ◆ operator*()

 VectorND operator* ( T rhs ) const
inline

Scalar multiplication.

Parameters
 rhs [in] the scalar to multiply with
Returns
the product

## ◆ operator-()

 VectorND operator- ( ) const
inline

Unary minus.

negative version

## ◆ operator/()

 VectorND operator/ ( T rhs ) const
inline

Scalar division.

Parameters
 rhs [in] the scalar to devide with
Returns
result of devision

## ◆ operator=()

 VectorND& operator= ( const Eigen::MatrixBase< R > & r )
inline

copy a vector from eigen type

Parameters
 r [in] an Eigen Vector

## ◆ operator==() [1/2]

 bool operator== ( const Eigen::MatrixBase< R > & rhs ) const
inline

Compare with rhs for equality.

Parameters
 rhs [in] other vector.
Returns
True if a equals b, false otherwise.

## ◆ operator==() [2/2]

 bool operator== ( const VectorND< N, T > & rhs ) const
inline

Compare with rhs for equality.

Parameters
 rhs [in] other vector.
Returns
True if this equals rhs, false otherwise.

## ◆ operator[]() [1/2]

 T& operator[] ( size_t i )
inline

Returns reference to VectorND element.

Parameters
 i [in] index in the VectorND $$i\in \{0,1,2\}$$
Returns
reference to element

## ◆ operator[]() [2/2]

 const T& operator[] ( size_t i ) const
inline

Returns reference to VectorND element.

Parameters
 i [in] index in the VectorND $$i\in \{0,1,2\}$$
Returns
const reference to element

 void read ( rw::common::InputArchive & iarchive, const std::string & id )
inlinevirtual

Enable read-serialization of inherited class by implementing this method. Data is read from iarchive and filled into this object.

Parameters
 iarchive [in] the InputArchive from which to read data. id [in] The id of the serialized sobject.
Note
the id can be empty in which case the overloaded method should provide a default identifier. E.g. the Vector3D class defined "Vector3D" as its default id.

Implements Serializable.

## ◆ toStdVector()

 std::vector toStdVector ( ) const
inline

converts the vector to a std:vector

Returns
a std::vector

## ◆ write()

 void write ( rw::common::OutputArchive & oarchive, const std::string & id ) const
inlinevirtual

Enable write-serialization of inherited class by implementing this method. Data is written to oarchive from this object.

Parameters
 oarchive [out] the OutputArchive in which data should be written. id [in] The id of the serialized sobject.
Note
the id can be empty in which case the overloaded method should provide a default identifier. E.g. the Vector3D class defined "Vector3D" as its default id.

Implements Serializable.

## ◆ zero()

 static VectorND zero ( )
inlinestatic

Get zero-initialized vector.

Returns
vector.

## ◆ angle() [1/2]

 double angle ( const VectorND< ND, T > & v1, const VectorND< ND, T > & v2 )
related

Calculates the angle from $$\mathbf{v1}$$ to $$\mathbf{v2}$$ around the axis defined by $$\mathbf{v1} \times \mathbf{v2}$$.

Parameters
 v1 [in] $$\mathbf{v1}$$ v2 [in] $$\mathbf{v2}$$
Returns
the angle

## ◆ angle() [2/2]

 double angle ( const VectorND< ND, T > & v1, const VectorND< ND, T > & v2, const VectorND< ND, T > & n )
related

Calculates the angle from $$\mathbf{v1}$$ to $$\mathbf{v2}$$ around the axis defined by $$\mathbf{v1} \times \mathbf{v2}$$ with n determining the sign.

Parameters
 v1 [in] $$\mathbf{v1}$$ v2 [in] $$\mathbf{v2}$$ n [in] $$\mathbf{n}$$
Returns
the angle

## ◆ cast()

 const VectorND< ND, Q > cast ( const VectorND< ND, T > & v )
related

Casts VectorND<N,T> to VectorND<Q>

Parameters
 v [in] VectorND with type T
Returns
VectorND with type Q

## ◆ cross() [1/2]

 const VectorND< ND, T > cross ( const VectorND< ND, T > & v1, const VectorND< ND, T > & v2 )
related

Calculates the 3D VectorND cross product $$\mathbf{v1} \times \mathbf{v2}$$.

Parameters
 v1 [in] $$\mathbf{v1}$$ v2 [in] $$\mathbf{v2}$$
Returns
the 3D VectorND cross product $$\mathbf{v1} \times \mathbf{v2}$$

The 3D VectorND cross product is defined as: $$\mathbf{v1} \times \mathbf{v2} = \left[\begin{array}{c} v1_y * v2_z - v1_z * v2_y \\ v1_z * v2_x - v1_x * v2_z \\ v1_x * v2_y - v1_y * v2_x \end{array}\right]$$

## ◆ cross() [2/2]

 void cross ( const VectorND< ND, T > & v1, const VectorND< ND, T > & v2, VectorND< ND, T > & dst )
related

Calculates the 3D VectorND cross product $$\mathbf{v1} \times \mathbf{v2}$$.

Parameters
 v1 [in] $$\mathbf{v1}$$ v2 [in] $$\mathbf{v2}$$ dst [out] the 3D VectorND cross product $$\mathbf{v1} \times \mathbf{v2}$$

The 3D VectorND cross product is defined as: $$\mathbf{v1} \times \mathbf{v2} = \left[\begin{array}{c} v1_y * v2_z - v1_z * v2_y \\ v1_z * v2_x - v1_x * v2_z \\ v1_x * v2_y - v1_y * v2_x \end{array}\right]$$

## ◆ dot()

 T dot ( const VectorND< ND, T > & v1, const VectorND< ND, T > & v2 )
related

Calculates the dot product $$\mathbf{v1} . \mathbf{v2}$$.

Parameters
 v1 [in] $$\mathbf{v1}$$ v2 [in] $$\mathbf{v2}$$
Returns
the dot product $$\mathbf{v1} . \mathbf{v2}$$

## ◆ normalize()

 const VectorND< ND, T > normalize ( const VectorND< ND, T > & v )
related

Returns the normalized VectorND $$\mathbf{n}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$$. In case $$\|mathbf{v}\| = 0$$ the zero VectorND is returned.

Parameters
 v [in] $$\mathbf{v}$$ which should be normalized
Returns
the normalized VectorND $$\mathbf{n}$$

## ◆ operator!=

 bool operator!= ( const Eigen::MatrixBase< R > & lhs, const VectorND< N, T > & rhs )
friend

Compare with rhs for inequality.

Parameters
 lhs [in] first vector. rhs [in] other vector.
Returns
True if lhs and rhs are different, false otherwise.

## ◆ operator*

 VectorND operator* ( T lhs, const VectorND< N, T > & rhs )
friend

Scalar multiplication.

Parameters
 lhs [in] the scalar to multiply with rhs [in] the Vector to be multiplied
Returns
the product

## ◆ operator/

 VectorND operator/ ( T lhs, const VectorND< N, T > & rhs )
friend

Scalar division.

Parameters
 lhs [in] the scalar to devide with rhs [out] the vector beind devided
Returns
result of devision

## ◆ operator<<

 std::ostream& operator<< ( std::ostream & out, const VectorND< N, T > & v )
friend

Streaming operator.

Parameters
 out [in/out] the stream to continue v [in] the vector to stream
Returns
reference to out

## ◆ operator==

 bool operator== ( const Eigen::MatrixBase< R > & lhs, const VectorND< N, T > & rhs )
friend

Compare with rhs for equality.

Parameters
 lhs [in] first vector. rhs [in] other vector.
Returns
True if lhs equals rhs, false otherwise.

The documentation for this class was generated from the following files: