Package org.robwork.sdurw
Class PolynomialNDEigenMatrix3fFloat
- java.lang.Object
- 
- org.robwork.sdurw.PolynomialNDEigenMatrix3fFloat
 
- 
 public class PolynomialNDEigenMatrix3fFloat extends java.lang.ObjectRepresentation of a polynomial that can have non-scalar coefficients (polynomial
 matrix).
 
 Representation of a polynomial of the following form:
 
 f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0
 
 The polynomial is represented as a list of coefficients ordered from lowest-order term to
 highest-order term, {c_0,c_1,...,c_n} .
- 
- 
Constructor SummaryConstructors Constructor Description PolynomialNDEigenMatrix3fFloat(long order)Create polynomial with uninitialized coefficients.PolynomialNDEigenMatrix3fFloat(long cPtr, boolean cMemoryOwn)PolynomialNDEigenMatrix3fFloat(PolynomialNDEigenMatrix3fFloat p)Create polynomial from other polynomial.PolynomialNDEigenMatrix3fFloat(VectorEigenMatrix3f coefficients)Create polynomial from vector.
 - 
Method SummaryAll Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialNDEigenMatrix3fFloatadd(PolynomialNDEigenMatrix3fFloat b)Polynomial addition.PolynomialNDEigenMatrix3fFloatdeflate(float x)Perform deflation of polynomial.voiddelete()PolynomialNDEigenMatrix3fFloatderivative()Get the derivative polynomial.
 PolynomialNDEigenMatrix3fFloatderivative(long n)Get the derivative polynomial.PolynomialNDEigenMatrix3fFloatdevideAssign(float s)PolynomialNDEigenMatrix3fFloatdivide(float s)Scalar divisionbooleanequals(PolynomialNDEigenMatrix3fFloat b)Check if polynomials are equal.EigenMatrix3fevaluate(float x)Evaluate the polynomial using Horner's Method.VectorEigenMatrix3fevaluateDerivatives(float x)Evaluate the first n derivatives of the polynomial using Horner's Method.VectorEigenMatrix3fevaluateDerivatives(float x, long n)Evaluate the first n derivatives of the polynomial using Horner's Method.EigenMatrix3fget(long i)static longgetCPtr(PolynomialNDEigenMatrix3fFloat obj)voidincreaseOrder()Increase the order of this polynomial.
 
 Note: see increaseOrder(std::size_t,const Coef&) for a version that initializes the new
 coefficients to a certain value.voidincreaseOrder(long increase)Increase the order of this polynomial.voidincreaseOrder(long increase, EigenMatrix3f value)Increase the order of this polynomial.PolynomialNDEigenMatrix3fFloatmultiply(float s)Scalar multiplicationPolynomialNDEigenMatrix3fFloatmultiplyAssign(float s)PolynomialNDEigenMatrix3fFloatnegate()Negate coefficients.longorder()Get the order of the polynomial (the highest power).voidset(long i, EigenMatrix3f d)PolynomialNDEigenMatrix3fFloatsubtract(PolynomialNDEigenMatrix3fFloat b)Polynomial subtraction.java.lang.StringtoString()
 
- 
- 
- 
Constructor Detail- 
PolynomialNDEigenMatrix3fFloatpublic PolynomialNDEigenMatrix3fFloat(long cPtr, boolean cMemoryOwn)
 - 
PolynomialNDEigenMatrix3fFloatpublic PolynomialNDEigenMatrix3fFloat(long order) Create polynomial with uninitialized coefficients.- Parameters:
- order- [in] the order of the polynomial.
 
 - 
PolynomialNDEigenMatrix3fFloatpublic PolynomialNDEigenMatrix3fFloat(VectorEigenMatrix3f coefficients) Create polynomial from vector.- Parameters:
- coefficients- [in] the coefficients ordered from lowest-order term to highest-order
 term.
 
 - 
PolynomialNDEigenMatrix3fFloatpublic PolynomialNDEigenMatrix3fFloat(PolynomialNDEigenMatrix3fFloat p) Create polynomial from other polynomial.- Parameters:
- p- [in] the polynomial to copy.
 
 
- 
 - 
Method Detail- 
getCPtrpublic static long getCPtr(PolynomialNDEigenMatrix3fFloat obj) 
 - 
deletepublic void delete() 
 - 
orderpublic long order() Get the order of the polynomial (the highest power).- Returns:
- the order.
 
 - 
increaseOrderpublic void increaseOrder(long increase) Increase the order of this polynomial.- Parameters:
- increase- [in] how much to increase the order (default is 1).
 Note: see increaseOrder(std::size_t,const Coef&) for a version that initializes the new
 coefficients to a certain value.
 
 - 
increaseOrderpublic void increaseOrder() Increase the order of this polynomial.
 
 Note: see increaseOrder(std::size_t,const Coef&) for a version that initializes the new
 coefficients to a certain value.
 - 
increaseOrderpublic void increaseOrder(long increase, EigenMatrix3f value)Increase the order of this polynomial.- Parameters:
- increase- [in] how much to increase the order (default is 1).
- value- [in] initialize new coefficients to this value.
 
 - 
evaluatepublic EigenMatrix3f evaluate(float x) Evaluate the polynomial using Horner's Method.- Parameters:
- x- [in] the input parameter.
- Returns:
- the value f(x) .
 
 - 
evaluateDerivativespublic VectorEigenMatrix3f evaluateDerivatives(float x, long n) Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
- x- [in] the input parameter.
- n- [in] the number of derivatives to find (default is the first derivative only)
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots} .
 
 - 
evaluateDerivativespublic VectorEigenMatrix3f evaluateDerivatives(float x) Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
- x- [in] the input parameter.
 
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots} .
 
 - 
deflatepublic PolynomialNDEigenMatrix3fFloat deflate(float x) Perform deflation of polynomial.- Parameters:
- x- [in] a root of the polynomial.
- Returns:
- a new polynomial of same order minus one.
 Note: There is no check that the given root is in fact a root of the polynomial.
 
 - 
derivativepublic PolynomialNDEigenMatrix3fFloat derivative(long n) Get the derivative polynomial.- Parameters:
- n- [in] gives the n'th derivative (default is n=1).
- Returns:
- a new polynomial of same order minus one.
 Note: To evaluate derivatives use the evaluate derivative method which is more precise.
 
 - 
derivativepublic PolynomialNDEigenMatrix3fFloat derivative() Get the derivative polynomial.
 - Returns:
- a new polynomial of same order minus one.
 Note: To evaluate derivatives use the evaluate derivative method which is more precise.
 
 - 
multiplypublic PolynomialNDEigenMatrix3fFloat multiply(float s) Scalar multiplication- Parameters:
- s- [in] scalar to multiply with.
- Returns:
- new polynomial after multiplication.
 
 - 
dividepublic PolynomialNDEigenMatrix3fFloat divide(float s) Scalar division- Parameters:
- s- [in] scalar to divide with.
- Returns:
- new polynomial after division.
 
 - 
multiplyAssignpublic PolynomialNDEigenMatrix3fFloat multiplyAssign(float s) 
 - 
devideAssignpublic PolynomialNDEigenMatrix3fFloat devideAssign(float s) 
 - 
subtractpublic PolynomialNDEigenMatrix3fFloat subtract(PolynomialNDEigenMatrix3fFloat b) Polynomial subtraction.- Parameters:
- b- [in] polynomial of to subtract.
- Returns:
- new polynomial after subtraction.
 
 - 
addpublic PolynomialNDEigenMatrix3fFloat add(PolynomialNDEigenMatrix3fFloat b) Polynomial addition.- Parameters:
- b- [in] polynomial to add.
- Returns:
- new polynomial after addition.
 
 - 
negatepublic PolynomialNDEigenMatrix3fFloat negate() Negate coefficients.- Returns:
- new polynomial with coefficients negated.
 
 - 
equalspublic boolean equals(PolynomialNDEigenMatrix3fFloat b) Check if polynomials are equal.- Parameters:
- b- [in] the polynomial to compare with.
- Returns:
- true if equal, false if not.
 
 - 
toStringpublic java.lang.String toString() - Overrides:
- toStringin class- java.lang.Object
 
 - 
getpublic EigenMatrix3f get(long i) 
 - 
setpublic void set(long i, EigenMatrix3f d)
 
- 
 
-