Package org.robwork.sdurw
Class PolynomialNDEigenRowVector3fFloat
- java.lang.Object
-
- org.robwork.sdurw.PolynomialNDEigenRowVector3fFloat
-
public class PolynomialNDEigenRowVector3fFloat extends java.lang.ObjectRepresentation of a polynomial that can have non-scalar coefficients (polynomial
matrix).
Representation of a polynomial of the following form:
f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0
The polynomial is represented as a list of coefficients ordered from lowest-order term to
highest-order term, {c_0,c_1,...,c_n} .
-
-
Constructor Summary
Constructors Constructor Description PolynomialNDEigenRowVector3fFloat(long order)Create polynomial with uninitialized coefficients.PolynomialNDEigenRowVector3fFloat(long cPtr, boolean cMemoryOwn)PolynomialNDEigenRowVector3fFloat(PolynomialNDEigenRowVector3fFloat p)Create polynomial from other polynomial.PolynomialNDEigenRowVector3fFloat(VectorEigenRowVector3f coefficients)Create polynomial from vector.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialNDEigenRowVector3fFloatadd(PolynomialNDEigenRowVector3fFloat b)Polynomial addition.PolynomialNDEigenRowVector3fFloatdeflate(float x)Perform deflation of polynomial.voiddelete()PolynomialNDEigenRowVector3fFloatderivative()Get the derivative polynomial.
PolynomialNDEigenRowVector3fFloatderivative(long n)Get the derivative polynomial.PolynomialNDEigenRowVector3fFloatdevideAssign(float s)PolynomialNDEigenRowVector3fFloatdivide(float s)Scalar divisionbooleanequals(PolynomialNDEigenRowVector3fFloat b)Check if polynomials are equal.EigenRowVector3fevaluate(float x)Evaluate the polynomial using Horner's Method.VectorEigenRowVector3fevaluateDerivatives(float x)Evaluate the first n derivatives of the polynomial using Horner's Method.VectorEigenRowVector3fevaluateDerivatives(float x, long n)Evaluate the first n derivatives of the polynomial using Horner's Method.EigenRowVector3fget(long i)static longgetCPtr(PolynomialNDEigenRowVector3fFloat obj)voidincreaseOrder()Increase the order of this polynomial.
Note: see increaseOrder(std::size_t,const Coef&) for a version that initializes the new
coefficients to a certain value.voidincreaseOrder(long increase)Increase the order of this polynomial.voidincreaseOrder(long increase, EigenRowVector3f value)Increase the order of this polynomial.PolynomialNDEigenRowVector3fFloatmultiply(float s)Scalar multiplicationPolynomialNDEigenRowVector3fFloatmultiplyAssign(float s)PolynomialNDEigenRowVector3fFloatnegate()Negate coefficients.longorder()Get the order of the polynomial (the highest power).voidset(long i, EigenRowVector3f d)PolynomialNDEigenRowVector3fFloatsubtract(PolynomialNDEigenRowVector3fFloat b)Polynomial subtraction.java.lang.StringtoString()
-
-
-
Constructor Detail
-
PolynomialNDEigenRowVector3fFloat
public PolynomialNDEigenRowVector3fFloat(long cPtr, boolean cMemoryOwn)
-
PolynomialNDEigenRowVector3fFloat
public PolynomialNDEigenRowVector3fFloat(long order)
Create polynomial with uninitialized coefficients.- Parameters:
order- [in] the order of the polynomial.
-
PolynomialNDEigenRowVector3fFloat
public PolynomialNDEigenRowVector3fFloat(VectorEigenRowVector3f coefficients)
Create polynomial from vector.- Parameters:
coefficients- [in] the coefficients ordered from lowest-order term to highest-order
term.
-
PolynomialNDEigenRowVector3fFloat
public PolynomialNDEigenRowVector3fFloat(PolynomialNDEigenRowVector3fFloat p)
Create polynomial from other polynomial.- Parameters:
p- [in] the polynomial to copy.
-
-
Method Detail
-
getCPtr
public static long getCPtr(PolynomialNDEigenRowVector3fFloat obj)
-
delete
public void delete()
-
order
public long order()
Get the order of the polynomial (the highest power).- Returns:
- the order.
-
increaseOrder
public void increaseOrder(long increase)
Increase the order of this polynomial.- Parameters:
increase- [in] how much to increase the order (default is 1).
Note: see increaseOrder(std::size_t,const Coef&) for a version that initializes the new
coefficients to a certain value.
-
increaseOrder
public void increaseOrder()
Increase the order of this polynomial.
Note: see increaseOrder(std::size_t,const Coef&) for a version that initializes the new
coefficients to a certain value.
-
increaseOrder
public void increaseOrder(long increase, EigenRowVector3f value)Increase the order of this polynomial.- Parameters:
increase- [in] how much to increase the order (default is 1).value- [in] initialize new coefficients to this value.
-
evaluate
public EigenRowVector3f evaluate(float x)
Evaluate the polynomial using Horner's Method.- Parameters:
x- [in] the input parameter.- Returns:
- the value f(x) .
-
evaluateDerivatives
public VectorEigenRowVector3f evaluateDerivatives(float x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x- [in] the input parameter.n- [in] the number of derivatives to find (default is the first derivative only)- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots} .
-
evaluateDerivatives
public VectorEigenRowVector3f evaluateDerivatives(float x)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x- [in] the input parameter.
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots} .
-
deflate
public PolynomialNDEigenRowVector3fFloat deflate(float x)
Perform deflation of polynomial.- Parameters:
x- [in] a root of the polynomial.- Returns:
- a new polynomial of same order minus one.
Note: There is no check that the given root is in fact a root of the polynomial.
-
derivative
public PolynomialNDEigenRowVector3fFloat derivative(long n)
Get the derivative polynomial.- Parameters:
n- [in] gives the n'th derivative (default is n=1).- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
derivative
public PolynomialNDEigenRowVector3fFloat derivative()
Get the derivative polynomial.
- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
multiply
public PolynomialNDEigenRowVector3fFloat multiply(float s)
Scalar multiplication- Parameters:
s- [in] scalar to multiply with.- Returns:
- new polynomial after multiplication.
-
divide
public PolynomialNDEigenRowVector3fFloat divide(float s)
Scalar division- Parameters:
s- [in] scalar to divide with.- Returns:
- new polynomial after division.
-
multiplyAssign
public PolynomialNDEigenRowVector3fFloat multiplyAssign(float s)
-
devideAssign
public PolynomialNDEigenRowVector3fFloat devideAssign(float s)
-
subtract
public PolynomialNDEigenRowVector3fFloat subtract(PolynomialNDEigenRowVector3fFloat b)
Polynomial subtraction.- Parameters:
b- [in] polynomial of to subtract.- Returns:
- new polynomial after subtraction.
-
add
public PolynomialNDEigenRowVector3fFloat add(PolynomialNDEigenRowVector3fFloat b)
Polynomial addition.- Parameters:
b- [in] polynomial to add.- Returns:
- new polynomial after addition.
-
negate
public PolynomialNDEigenRowVector3fFloat negate()
Negate coefficients.- Returns:
- new polynomial with coefficients negated.
-
equals
public boolean equals(PolynomialNDEigenRowVector3fFloat b)
Check if polynomials are equal.- Parameters:
b- [in] the polynomial to compare with.- Returns:
- true if equal, false if not.
-
toString
public java.lang.String toString()
- Overrides:
toStringin classjava.lang.Object
-
get
public EigenRowVector3f get(long i)
-
set
public void set(long i, EigenRowVector3f d)
-
-