Class QuadraticSurfaceCPtr


  • public class QuadraticSurfaceCPtr
    extends java.lang.Object
    Ptr stores a pointer and optionally takes ownership of the value.
    • Constructor Detail

      • QuadraticSurfaceCPtr

        public QuadraticSurfaceCPtr​(long cPtr,
                                    boolean cMemoryOwn)
      • QuadraticSurfaceCPtr

        public QuadraticSurfaceCPtr()
        Default constructor yielding a NULL-pointer.
      • QuadraticSurfaceCPtr

        public QuadraticSurfaceCPtr​(QuadraticSurface ptr)
        Do not take ownership of ptr.

        ptr can be null.

        The constructor is implicit on purpose.
    • Method Detail

      • delete

        public void delete()
      • isShared

        public boolean isShared()
        check if this Ptr has shared ownership or none
        ownership
        Returns:
        true if Ptr has shared ownership, false if it has no ownership.
      • isNull

        public boolean isNull()
        checks if the pointer is null
        Returns:
        Returns true if the pointer is null
      • SurfaceEqual

        public boolean SurfaceEqual​(Surface surface,
                                    double threshold)
      • insideTrimmingRegion

        public boolean insideTrimmingRegion​(Vector3D P)
      • u

        public double u()
        Get the scalar for the zero order term in the implicit formulation.
      • determinantA

        public double determinantA()
        Get the determinant of the \mathbf{A} matrix.
        Returns:
        the determinant.
      • normalize

        public QuadraticSurfacePtr normalize()
        Normalize the implicit expression such that the largest coefficient becomes one.

        For a quadratic surface, a scaling of \mathbf{A}, \mathbf{a} and u with a common
        factor, will give the exact same surface. This means that the numerical values can get
        arbitrarily big or small. This functions scales the expression such that the largest
        element becomes 1.

        Returns:
        a mathematically identical surface, where the coefficients of the defining
        equation is normalized.
      • diagonalized

        public boolean diagonalized()
        Check if this surface is diagonalized.
        Returns:
        true if A is digaonalized, false otherwise.