Package org.robwork.sdurw_math
Class PolynomialNDdDouble
- java.lang.Object
-
- org.robwork.sdurw_math.PolynomialNDdDouble
-
public class PolynomialNDdDouble extends java.lang.Object
Representation of a polynomial that can have non-scalar coefficients (polynomial
matrix).
Representation of a polynomial of the following form:
f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0
The polynomial is represented as a list of coefficients ordered from lowest-order term to
highest-order term, {c_0,c_1,...,c_n}.
-
-
Constructor Summary
Constructors Constructor Description PolynomialNDdDouble(long order)
Create polynomial with uninitialized coefficients.PolynomialNDdDouble(long cPtr, boolean cMemoryOwn)
PolynomialNDdDouble(vector_d coefficients)
Create polynomial from vector.PolynomialNDdDouble(PolynomialNDdDouble p)
Create polynomial from other polynomial.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialNDdDouble
add(PolynomialNDdDouble b)
Polynomial addition.PolynomialNDdDouble
addAssign(PolynomialNDdDouble b)
Polynomial addition.void
assign(PolynomialNDdDouble b)
Assignment.PolynomialNDdDouble
deflate(double x)
Perform deflation of polynomial.void
delete()
PolynomialNDdDouble
derivative()
Get the derivative polynomial.
PolynomialNDdDouble
derivative(long n)
Get the derivative polynomial.PolynomialNDdDouble
devideAssign(double s)
Scalar divisionPolynomialNDdDouble
divide(double s)
Scalar divisionboolean
equals(PolynomialNDdDouble b)
Check if polynomials are equal.double
evaluate(double x)
Evaluate the polynomial using Horner's Method.vector_d
evaluateDerivatives(double x)
Evaluate the first n derivatives of the polynomial using Horner's Method.vector_d
evaluateDerivatives(double x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.double
get(long i)
static long
getCPtr(PolynomialNDdDouble obj)
void
increaseOrder()
void
increaseOrder(long increase)
void
increaseOrder(long increase, double value)
Increase the order of this polynomial.PolynomialNDdDouble
multiply(double s)
Scalar multiplicationPolynomialNDdDouble
multiplyAssign(double s)
Scalar multiplicationPolynomialNDdDouble
negate()
Negate coefficients.long
order()
Get the order of the polynomial (the highest power).void
set(long i, double d)
PolynomialNDdDouble
subtract(PolynomialNDdDouble b)
Polynomial subtraction.PolynomialNDdDouble
subtractAssign(PolynomialNDdDouble b)
Polynomial subtraction.java.lang.String
toString()
-
-
-
Constructor Detail
-
PolynomialNDdDouble
public PolynomialNDdDouble(long cPtr, boolean cMemoryOwn)
-
PolynomialNDdDouble
public PolynomialNDdDouble(long order)
Create polynomial with uninitialized coefficients.- Parameters:
order
- [in] the order of the polynomial.
-
PolynomialNDdDouble
public PolynomialNDdDouble(vector_d coefficients)
Create polynomial from vector.- Parameters:
coefficients
- [in] the coefficients ordered from lowest-order term to highest-order
term.
-
PolynomialNDdDouble
public PolynomialNDdDouble(PolynomialNDdDouble p)
Create polynomial from other polynomial.- Parameters:
p
- [in] the polynomial to copy.
-
-
Method Detail
-
getCPtr
public static long getCPtr(PolynomialNDdDouble obj)
-
delete
public void delete()
-
order
public long order()
Get the order of the polynomial (the highest power).- Returns:
- the order.
-
increaseOrder
public void increaseOrder(long increase, double value)
Increase the order of this polynomial.- Parameters:
increase
- [in] how much to increase the order (default is 1).value
- [in] initialize new coefficients to this value.
-
increaseOrder
public void increaseOrder(long increase)
-
increaseOrder
public void increaseOrder()
-
evaluate
public double evaluate(double x)
Evaluate the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.- Returns:
- the value f(x).
-
evaluateDerivatives
public vector_d evaluateDerivatives(double x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.n
- [in] the number of derivatives to find (default is the first derivative only)- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
evaluateDerivatives
public vector_d evaluateDerivatives(double x)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
deflate
public PolynomialNDdDouble deflate(double x)
Perform deflation of polynomial.- Parameters:
x
- [in] a root of the polynomial.- Returns:
- a new polynomial of same order minus one.
Note: There is no check that the given root is in fact a root of the polynomial.
-
derivative
public PolynomialNDdDouble derivative(long n)
Get the derivative polynomial.- Parameters:
n
- [in] gives the n'th derivative (default is n=1).- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
derivative
public PolynomialNDdDouble derivative()
Get the derivative polynomial.
- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
get
public double get(long i)
-
set
public void set(long i, double d)
-
multiply
public PolynomialNDdDouble multiply(double s)
Scalar multiplication- Parameters:
s
- [in] scalar to multiply with.- Returns:
- new polynomial after multiplication.
-
divide
public PolynomialNDdDouble divide(double s)
Scalar division- Parameters:
s
- [in] scalar to divide with.- Returns:
- new polynomial after division.
-
multiplyAssign
public PolynomialNDdDouble multiplyAssign(double s)
Scalar multiplication- Parameters:
s
- [in] the scalar to multiply with.- Returns:
- reference to same polynomial with changed coefficients.
-
devideAssign
public PolynomialNDdDouble devideAssign(double s)
Scalar division- Parameters:
s
- [in] the scalar to divide with.- Returns:
- reference to same polynomial with changed coefficients.
-
subtract
public PolynomialNDdDouble subtract(PolynomialNDdDouble b)
Polynomial subtraction.- Parameters:
b
- [in] polynomial of to subtract.- Returns:
- new polynomial after subtraction.
-
subtractAssign
public PolynomialNDdDouble subtractAssign(PolynomialNDdDouble b)
Polynomial subtraction.- Parameters:
b
- [in] polynomial to subtract.- Returns:
- same polynomial with different coefficients after subtraction.
-
add
public PolynomialNDdDouble add(PolynomialNDdDouble b)
Polynomial addition.- Parameters:
b
- [in] polynomial to add.- Returns:
- new polynomial after addition.
-
addAssign
public PolynomialNDdDouble addAssign(PolynomialNDdDouble b)
Polynomial addition.- Parameters:
b
- [in] polynomial to add.- Returns:
- same polynomial with different coefficients after addition.
-
assign
public void assign(PolynomialNDdDouble b)
Assignment.- Parameters:
b
- [in] the polynomial to take coefficients from.
-
negate
public PolynomialNDdDouble negate()
Negate coefficients.- Returns:
- new polynomial with coefficients negated.
-
toString
public java.lang.String toString()
- Overrides:
toString
in classjava.lang.Object
-
equals
public boolean equals(PolynomialNDdDouble b)
Check if polynomials are equal.- Parameters:
b
- [in] the polynomial to compare with.- Returns:
- true if equal, false if not.
-
-