Class SE3DeviceCPtr


  • public class SE3DeviceCPtr
    extends java.lang.Object
    Ptr stores a pointer and optionally takes ownership of the value.
    • Constructor Detail

      • SE3DeviceCPtr

        public SE3DeviceCPtr​(long cPtr,
                             boolean cMemoryOwn)
      • SE3DeviceCPtr

        public SE3DeviceCPtr()
        Default constructor yielding a NULL-pointer.
      • SE3DeviceCPtr

        public SE3DeviceCPtr​(SE3Device ptr)
        Do not take ownership of ptr.

        ptr can be null.

        The constructor is implicit on purpose.
    • Method Detail

      • delete

        public void delete()
      • deref

        public SE3Device deref()
        The pointer stored in the object.
      • __ref__

        public SE3Device __ref__()
        Dereferencing operator.
      • getDeref

        public SE3Device getDeref()
        Member access operator.
      • equals

        public boolean equals​(SE3Device p)
      • isShared

        public boolean isShared()
        check if this Ptr has shared ownership or none
        ownership
        Returns:
        true if Ptr has shared ownership, false if it has no ownership.
      • isNull

        public boolean isNull()
        checks if the pointer is null
        Returns:
        Returns true if the pointer is null
      • setQ

        public void setQ​(Q q,
                         State state)


      • getQ

        public Q getQ​(State state)
      • getBounds

        public PairQ getBounds()


        Since the SE3Device robot is unconstrained and can move anywhere
        whithin the taskspace each of the 6 input's are unbounded ( [-\inf, \inf] ) in practice the inputs are limited to the
        numerical limits of the real datatype, thus this method returns the
        range ([DBL_MIN, DBL_MAX]) for each of the 6 inputs
      • getDOF

        public long getDOF()


        This method always returns the value 6
      • getVelocityLimits

        public Q getVelocityLimits()
        get the Joint velocity limit
        Returns:
        the velocity limit as Q
      • getAccelerationLimits

        public Q getAccelerationLimits()
        get the Joint Acceleration limit
        Returns:
        the Acceleration limit as Q
      • getName

        public java.lang.String getName()
        Returns the name of the device
        Returns:
        name of the device
      • baseTframe

        public Transform3D baseTframe​(FrameCPtr f,
                                      State state)
        Calculates the homogeneous transform from base to a frame f
        \robabx{b}{f}{\mathbf{T}}
        Returns:
        the homogeneous transform \robabx{b}{f}{\mathbf{T}}
      • baseTend

        public Transform3D baseTend​(State state)
        Calculates the homogeneous transform from base to the end frame
        \robabx{base}{end}{\mathbf{T}}
        Returns:
        the homogeneous transform \robabx{base}{end}{\mathbf{T}}
      • worldTbase

        public Transform3D worldTbase​(State state)
        Calculates the homogeneous transform from world to base \robabx{w}{b}{\mathbf{T}}

        Returns:
        the homogeneous transform \robabx{w}{b}{\mathbf{T}}
      • baseJframe

        public Jacobian baseJframe​(FrameCPtr frame,
                                   State state)
        Calculates the jacobian matrix of a frame f described in the
        robot base frame ^{base}_{frame}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

        Parameters:
        frame - [in] Frame for which to calculate the Jacobian
        state - [in] State for which to calculate the Jacobian

        Returns:
        the 6*ndof jacobian matrix: {^{base}_{frame}}\mathbf{J}_{\mathbf{q}}(\mathbf{q})

        This method calculates the jacobian relating joint velocities ( \mathbf{\dot{q}} ) to the frame f velocity seen from base-frame
        ( \nu^{base}_{frame} )

        \nu^{base}_{frame} = {^{base}_{frame}}\mathbf{J}_\mathbf{q}(\mathbf{q})\mathbf{\dot{q}}


        The jacobian matrix {^{base}_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q})
        is defined as:

        {^{base}_n}\mathbf{J}_{\mathbf{q}}(\mathbf{q}) = \frac{\partial ^{base}\mathbf{x}_n}{\partial \mathbf{q}}

        By default the method forwards to baseJframes().
      • baseJframes

        public Jacobian baseJframes​(FrameVector frames,
                                    State state)
        The Jacobian for a sequence of frames.

        A Jacobian is computed for each of the frames and the Jacobians are
        stacked on top of eachother.
        Parameters:
        frames - [in] the frames to calculate the frames from
        state - [in] the state to calculate in
        Returns:
        the jacobian
      • baseJCend

        public JacobianCalculatorPtr baseJCend​(State state)
        DeviceJacobian for the end frame.

        By default this method forwards to baseDJframe().
      • baseJCframe

        public JacobianCalculatorPtr baseJCframe​(FrameCPtr frame,
                                                 State state)
        DeviceJacobian for a particular frame.

        By default this method forwards to baseDJframes().