Package org.robwork.sdurw_math
Class PolynomialNDEigenMatrix3fFloat
- java.lang.Object
-
- org.robwork.sdurw_math.PolynomialNDEigenMatrix3fFloat
-
public class PolynomialNDEigenMatrix3fFloat extends java.lang.Object
Representation of a polynomial that can have non-scalar coefficients (polynomial
matrix).
Representation of a polynomial of the following form:
f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0
The polynomial is represented as a list of coefficients ordered from lowest-order term to
highest-order term, {c_0,c_1,...,c_n}.
-
-
Constructor Summary
Constructors Constructor Description PolynomialNDEigenMatrix3fFloat(long order)
Create polynomial with uninitialized coefficients.PolynomialNDEigenMatrix3fFloat(long cPtr, boolean cMemoryOwn)
PolynomialNDEigenMatrix3fFloat(PolynomialNDEigenMatrix3fFloat p)
Create polynomial from other polynomial.PolynomialNDEigenMatrix3fFloat(VectorEigenMatrix3f coefficients)
Create polynomial from vector.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description PolynomialNDEigenMatrix3fFloat
add(PolynomialNDEigenMatrix3fFloat b)
Polynomial addition.PolynomialNDEigenMatrix3fFloat
addAssign(PolynomialNDEigenMatrix3fFloat b)
Polynomial addition.void
assign(PolynomialNDEigenMatrix3fFloat b)
Assignment.PolynomialNDEigenMatrix3fFloat
deflate(float x)
Perform deflation of polynomial.void
delete()
PolynomialNDEigenMatrix3fFloat
derivative()
Get the derivative polynomial.
PolynomialNDEigenMatrix3fFloat
derivative(long n)
Get the derivative polynomial.PolynomialNDEigenMatrix3fFloat
devideAssign(float s)
Scalar divisionPolynomialNDEigenMatrix3fFloat
divide(float s)
Scalar divisionboolean
equals(PolynomialNDEigenMatrix3fFloat b)
Check if polynomials are equal.EigenMatrix3f
evaluate(float x)
Evaluate the polynomial using Horner's Method.VectorEigenMatrix3f
evaluateDerivatives(float x)
Evaluate the first n derivatives of the polynomial using Horner's Method.VectorEigenMatrix3f
evaluateDerivatives(float x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.EigenMatrix3f
get(long i)
static long
getCPtr(PolynomialNDEigenMatrix3fFloat obj)
void
increaseOrder()
void
increaseOrder(long increase)
void
increaseOrder(long increase, EigenMatrix3f value)
Increase the order of this polynomial.PolynomialNDEigenMatrix3fFloat
multiply(float s)
Scalar multiplicationPolynomialNDEigenMatrix3fFloat
multiplyAssign(float s)
Scalar multiplicationPolynomialNDEigenMatrix3fFloat
negate()
Negate coefficients.long
order()
Get the order of the polynomial (the highest power).void
set(long i, EigenMatrix3f d)
PolynomialNDEigenMatrix3fFloat
subtract(PolynomialNDEigenMatrix3fFloat b)
Polynomial subtraction.PolynomialNDEigenMatrix3fFloat
subtractAssign(PolynomialNDEigenMatrix3fFloat b)
Polynomial subtraction.java.lang.String
toString()
-
-
-
Constructor Detail
-
PolynomialNDEigenMatrix3fFloat
public PolynomialNDEigenMatrix3fFloat(long cPtr, boolean cMemoryOwn)
-
PolynomialNDEigenMatrix3fFloat
public PolynomialNDEigenMatrix3fFloat(long order)
Create polynomial with uninitialized coefficients.- Parameters:
order
- [in] the order of the polynomial.
-
PolynomialNDEigenMatrix3fFloat
public PolynomialNDEigenMatrix3fFloat(VectorEigenMatrix3f coefficients)
Create polynomial from vector.- Parameters:
coefficients
- [in] the coefficients ordered from lowest-order term to highest-order
term.
-
PolynomialNDEigenMatrix3fFloat
public PolynomialNDEigenMatrix3fFloat(PolynomialNDEigenMatrix3fFloat p)
Create polynomial from other polynomial.- Parameters:
p
- [in] the polynomial to copy.
-
-
Method Detail
-
getCPtr
public static long getCPtr(PolynomialNDEigenMatrix3fFloat obj)
-
delete
public void delete()
-
order
public long order()
Get the order of the polynomial (the highest power).- Returns:
- the order.
-
increaseOrder
public void increaseOrder(long increase, EigenMatrix3f value)
Increase the order of this polynomial.- Parameters:
increase
- [in] how much to increase the order (default is 1).value
- [in] initialize new coefficients to this value.
-
increaseOrder
public void increaseOrder(long increase)
-
increaseOrder
public void increaseOrder()
-
evaluate
public EigenMatrix3f evaluate(float x)
Evaluate the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.- Returns:
- the value f(x).
-
evaluateDerivatives
public VectorEigenMatrix3f evaluateDerivatives(float x, long n)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.n
- [in] the number of derivatives to find (default is the first derivative only)- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
evaluateDerivatives
public VectorEigenMatrix3f evaluateDerivatives(float x)
Evaluate the first n derivatives of the polynomial using Horner's Method.- Parameters:
x
- [in] the input parameter.
- Returns:
- a vector of values {f(x),\dot{f}(x),\ddot{f}(x),\cdots}.
-
deflate
public PolynomialNDEigenMatrix3fFloat deflate(float x)
Perform deflation of polynomial.- Parameters:
x
- [in] a root of the polynomial.- Returns:
- a new polynomial of same order minus one.
Note: There is no check that the given root is in fact a root of the polynomial.
-
derivative
public PolynomialNDEigenMatrix3fFloat derivative(long n)
Get the derivative polynomial.- Parameters:
n
- [in] gives the n'th derivative (default is n=1).- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
derivative
public PolynomialNDEigenMatrix3fFloat derivative()
Get the derivative polynomial.
- Returns:
- a new polynomial of same order minus one.
Note: To evaluate derivatives use the evaluate derivative method which is more precise.
-
get
public EigenMatrix3f get(long i)
-
set
public void set(long i, EigenMatrix3f d)
-
multiply
public PolynomialNDEigenMatrix3fFloat multiply(float s)
Scalar multiplication- Parameters:
s
- [in] scalar to multiply with.- Returns:
- new polynomial after multiplication.
-
divide
public PolynomialNDEigenMatrix3fFloat divide(float s)
Scalar division- Parameters:
s
- [in] scalar to divide with.- Returns:
- new polynomial after division.
-
multiplyAssign
public PolynomialNDEigenMatrix3fFloat multiplyAssign(float s)
Scalar multiplication- Parameters:
s
- [in] the scalar to multiply with.- Returns:
- reference to same polynomial with changed coefficients.
-
devideAssign
public PolynomialNDEigenMatrix3fFloat devideAssign(float s)
Scalar division- Parameters:
s
- [in] the scalar to divide with.- Returns:
- reference to same polynomial with changed coefficients.
-
subtract
public PolynomialNDEigenMatrix3fFloat subtract(PolynomialNDEigenMatrix3fFloat b)
Polynomial subtraction.- Parameters:
b
- [in] polynomial of to subtract.- Returns:
- new polynomial after subtraction.
-
subtractAssign
public PolynomialNDEigenMatrix3fFloat subtractAssign(PolynomialNDEigenMatrix3fFloat b)
Polynomial subtraction.- Parameters:
b
- [in] polynomial to subtract.- Returns:
- same polynomial with different coefficients after subtraction.
-
add
public PolynomialNDEigenMatrix3fFloat add(PolynomialNDEigenMatrix3fFloat b)
Polynomial addition.- Parameters:
b
- [in] polynomial to add.- Returns:
- new polynomial after addition.
-
addAssign
public PolynomialNDEigenMatrix3fFloat addAssign(PolynomialNDEigenMatrix3fFloat b)
Polynomial addition.- Parameters:
b
- [in] polynomial to add.- Returns:
- same polynomial with different coefficients after addition.
-
assign
public void assign(PolynomialNDEigenMatrix3fFloat b)
Assignment.- Parameters:
b
- [in] the polynomial to take coefficients from.
-
negate
public PolynomialNDEigenMatrix3fFloat negate()
Negate coefficients.- Returns:
- new polynomial with coefficients negated.
-
toString
public java.lang.String toString()
- Overrides:
toString
in classjava.lang.Object
-
equals
public boolean equals(PolynomialNDEigenMatrix3fFloat b)
Check if polynomials are equal.- Parameters:
b
- [in] the polynomial to compare with.- Returns:
- true if equal, false if not.
-
-